JGI JAIN COLLEGE VV Puram 2 nd PUC MOCK Paper – Jan. 2024		Course: Subject:	2 nd year PUC Mathematics
		Max. Marks:	80
		Duration:	3:15 hour
Instructions : 1. The question paper has five parts namely A, B, C, D and E Answer all the parts 2 Part A has 15 multiple choice questions 5 fill in the blank questions			
3. Use the graph sheet for question on linear programming problem in part E			
PART A			
I. Answer all the multiple-choice questions: $15 \times 1 = 15$			
1. The relation R in the set $\{1,2,3\}$ given by R= $\{(1,2), (2,1), (1,1)\}$ is			
a) Reflexive and transitive b) Symmetric and transitive c) Only symmetric d) Equivalence			
2. The signum function $f: R \to R$ given by $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$			
a) f is one-one onto	b) f is one-one but	not onto	
c) f is not one-one but onto	d) Neither one-one nor onto		
3. The principal value branch of $\cos^{-1} x$			
a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	c) $(0,\pi)$	d) $[0, \pi]$	
4. The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is			
a) 27 b) 25	c) 81	d) 512	
5. If A is an invertible matrix of order 2 and $ A = 10$ then det (A^{-1}) is equal to			
a) 10 b) $\frac{1}{10}$	c) -10	d) 1	
6. The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at			
a) 4 b) 1.5	c) -2	d) 1	
7. The derivative of $y = \log_{10} x$ is			
a) $\frac{1}{x}$ b) $\frac{1}{x(\log_e 10)}$	c) $\frac{\log x}{\log 10}$	d) $\log_x 1$	0
8. The interval in which $y = x^2 e^{-x}$ is increasing is			
a) $(-\infty, \infty)$ b) $(-2, 0)$	c) $(2,\infty)$	d) (0,2)	
9. $\int \sin(3x-2)dx$ is			
a) $-\frac{\sin(3x-2)}{2} + c$ b) $\frac{\cos(3x-2)}{2}$	$\frac{-2}{-2}+c$ c)- $\frac{-2}{-2}$	$\frac{\cos(3x-2)}{3} + c$	d) $-\frac{\sin(3x-2)}{3}+c$
10. $\int_{0}^{2} e^{x} dx$ is			
a) e^2 b) e^x	c) $e^2 - 1$	d) $e^{x} - 2$,
11. If \vec{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector, if			
a) $\lambda = 1$ b) $\lambda = -1$	c) $a = \lambda $	d) $a = \frac{1}{ \lambda }$	<u> </u>

2nd PUC Mathematics Mock Paper Jan.2024

- 12. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is Equal to
 - a) 0 b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) π
- 13. If a line makes angles α, β, γ with the positive direction co-ordinate axes, then the value of sin²α + sin²β + sin²γ is
 a) b) 1 c) 4 d) 0

14. The minimum value of the objective function z = 4x + 3y occurs at the pointa) (0, 8)b) (2,5)c) (4,3)d) (9,0)

15. The probability of obtaining an even prime number on each die, when a pair of dice are rolled is a) 0 b) $\frac{1}{3}$ c) $\frac{1}{12}$ d) $\frac{1}{36}$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket

$$\left(0, 2, 1, \frac{\pi}{4}, 7, \frac{\pi}{2}\right)$$

16. The value of $\tan^{-1} \left[2\cos\left(2\sin^{-1}\frac{1}{2}\right) \right]$ is _____

17. A square matrix A is a singular matrix if |A| is _____

- 18. The order of the differential equation $\left(\frac{d^2 y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$ is ______
- 19. The lines $\frac{x-5}{k} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular, then k is_____

20. If E and F be events of a sample space S of an experiment then P(S | F) is _____

PART –B

III. Answer any six questions

21. Prove that $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{7}$

22. Find the equation of line joining (1, 2), (3, 6) using determinant method 23. Find $\frac{dy}{dx}$, if $2x + 3y = \sin y$.

- 24. An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
- 25. Find the local minimum value of the function f given by f(x) = |x + 2| 1

26. Find
$$\int \frac{1}{(x+1)(x-2)} dx$$

27. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos 2x dx$

28. Find the angle between the vectors \vec{a} and \vec{b} such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

_ _

 $6 \times 2 = 12$

 $5 \times 1 = 5$

2nd PUC Mathematics Mock Paper Jan.2024

29. Find the angle between the pair of lines given by

$$\vec{r} = (3\hat{i} + 2j - 4k) + \lambda(\hat{i} + 2j + 2k) \text{ and } \vec{r} = (5\hat{i} - 2j) + \mu(3\hat{i} + 2j + 6k)$$

- 30. Two coins are tossed once. Find P(E|F) where E : no tail appears, F : no head appears.
- 31. If A and B are two independent events , then prove that the probability of occurrence of at least one of A and B is given by 1 P(A') P(B').

PART - C

IV. Answer any six questions

- 32. Show that the relation R in the set of real numbers R defined as R= $\{(a,b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
- 33. Simplify: $\tan^{-1}\left(\frac{2\cos x 3\sin x}{3\cos x + 2\sin x}\right), \frac{2}{3}\tan x > -1.$
- 34. If A and B are invertible matrices of the same order, then prove that $(AB)^{-1} = B^{-1}A^{-1}$.

35. If
$$x = \sqrt{a^{\sin^{-1}t}}$$
, $y = \sqrt{a^{\cos^{-1}t}}$ show that $\frac{dy}{dx} = -\frac{y}{x}$.

- 36. Differentiate $x^{\log x}$, x > 0 with respect to x
- 37. Find the intervals in which the function $f(x) = x^2 4x + 6$ is
 - i) strictly increasing ii) strictly decreasing
- 38. Find $\int x(\log x)^2 dx$

39. Find the equation of curve passing through the point (-2, 3), given that the slope of the tangent to the curve at any point (x, y) is $\frac{2x}{y^2}$

- 40. Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{c}| = 2$
- 41. If $\vec{a} = 2\hat{i} + 2j + 3k$, $\vec{b} = -\hat{i} + 2j + k$ and $\vec{c} = 3\hat{i} + j$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ
- 42. A man is known to speak truth 4 out of 5 times. He tossed a coin and reports that it is head. Find the probability that it is actually head?

PART - D

V. Answer any four questions

43. Let $f: N \rightarrow Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3\}$

for some
$$x \in N$$
}.Show that f is invertible. Find the inverse of f.
44. If $A = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} B = \begin{bmatrix} 2 & 4 & -6 \end{bmatrix}$ verify that $(AB)^{|} = B^{|}A^{|}$

- 45. Solve by matrix method: x + y + z = 6, x 2y + 3z = 6, x y + z = 2.
- 46. If $y = \sin^{-1} x$, $(-1 \le x \le 1)$ Show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0$.
- 47. Find the integral of $\frac{1}{\sqrt{x^2 + a^2}}$ with respect to x and hence evaluate $\int \frac{dx}{\sqrt{x^2 + 2x + 4}}$.

 $6 \times 3 = 18$

 $4 \times 5 = 20$

- 48. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 49. Solve the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$
- 50. Derive the formula to find the distance between two skew lines.

PART - E

VI. Answer the following questions

51. Prove that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$

And hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$

OR

Maximize and Minimize Z = 3x + 2y subject to the constraints $x + 2y \le 10$, $3x + y \le 15$, $x \ge 0$, $y \ge 0$

52. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 Show that $A^2 - 5A + 7I = O$. Hence find A^{-1} 4 marks

Find the value of k so that the function
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$

6 marks