JGi JAIN COLLEGE v v puram

$2^{\text {nd }}$ PUC MOCK Paper - Jan. 2024

Course: $\quad 2^{\text {nd }}$ year PUC
Subject: Mathematics
Max. Marks: 80
Duration: 3:15 hour

Instructions: 1. The question paper has five parts namely A, B, C, D and E
Answer all the parts
2. Part A has 15 multiple choice questions, 5 fill in the blank questions
3. Use the graph sheet for question on linear programming problem in part E

PART A

I. Answer all the multiple-choice questions:

1. The relation R in the set $\{1,2,3\}$ given by $\mathrm{R}=\{(1,2),(2,1),(1,1)\}$ is
a) Reflexive and transitive
b) Symmetric and transitive
c) Only symmetric
d) Equivalence
2. The signum function $f: R \rightarrow R$ given by $f(x)=\left\{\begin{array}{cc}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{array}\right.$ is
a) f is one-one onto
b) f is one-one but not onto
c) f is not one-one but onto
d) Neither one-one nor onto
3. The principal value branch of $\cos ^{-1} x$
a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $(0, \pi)$
d) $[0, \pi]$
4. The number of all possible matrices of order 3×3 with each entry 0 or 1 is
a) 27
b) 25
c) 81
d) 512
5. If A is an invertible matrix of order 2 and $|A|=10$ then $\operatorname{det}\left(A^{-1}\right)$ is equal to
a) 10
b) $\frac{1}{10}$
c) -10
d) 1
6. The function $f(x)=[x]$, where $[x]$ denotes the greatest integer function, is continuous at
a) 4
b) 1.5
c) -2
d) 1
7. The derivative of $y=\log _{10} x$ is
a) $\frac{1}{x}$
b) $\frac{1}{x\left(\log _{e} 10\right)}$
c) $\frac{\log x}{\log 10}$
d) $\log _{x} 10$
8. The interval in which $y=x^{2} e^{-x}$ is increasing is
a) $(-\infty, \infty)$
b) $(-2,0)$
c) $(2, \infty)$
d) $(0,2)$
9. $\int \sin (3 x-2) d x$ is
a) $-\frac{\sin (3 x-2)}{2}+c$
b) $\frac{\cos (3 x-2)}{2}+c$
c) $-\frac{\cos (3 x-2)}{3}+c$
d) $-\frac{\sin (3 x-2)}{3}+c$
10. $\int_{0}^{2} e^{x} d x$ is
a) e^{2}
b) e^{x}
c) $e^{2}-1$
d) $e^{x}-2$
11. If \vec{a} is a non-zero vector of magnitude ' a ' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector, if
a) $\lambda=1$
b) $\lambda=-1$
c) $a=|\lambda|$
d) $a=\frac{1}{|\lambda|}$
12. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is Equal to
a) 0
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) π
13. If a line makes angles α, β, γ with the positive direction co-ordinate axes, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is
a)
b) 1
c) 4
d) 0
14. The minimum value of the objective function $z=4 x+3 y$ occurs at the point
a) $(0,8)$
b) $(2,5)$
c) $(4,3)$
d) $(9,0)$
15. The probability of obtaining an even prime number on each die, when a pair of dice are rolled is
a) 0
b) $\frac{1}{3}$
c) $\frac{1}{12}$
d) $\frac{1}{36}$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket

$$
\left(0,2,1, \frac{\pi}{4}, 7, \frac{\pi}{2}\right) \quad \mathbf{5} \times \mathbf{1}=\mathbf{5}
$$

16. The value of $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$ is \qquad
17. A square matrix A is a singular matrix if $|\mathrm{A}|$ is \qquad
18. The order of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$ is \qquad
19. The lines $\frac{x-5}{k}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular, then k is \qquad
20. If E and F be events of a sample space S of an experiment then $P(S \mid F)$ is \qquad
PART - B
III. Answer any six questions
21. Prove that $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{7}$
22. Find the equation of line joining (1,2), (3,6) using determinant method
23. Find $\frac{d y}{d x}$, if $2 x+3 y=\sin y$.
24. An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of the cube increasing when the edge is 10 cm long?
25. Find the local minimum value of the function f given by $f(x)=|x+2|-1$
26. Find $\int \frac{1}{(x+1)(x-2)} d x$
27. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
28. Find the angle between the vectors \vec{a} and \vec{b} such that $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$
29. Find the angle between the pair of lines given by

$$
\vec{r}=(3 \hat{i}+2 j-4 k)+\lambda(\hat{i}+2 j+2 k) \text { and } \vec{r}=(5 \hat{i}-2 j)+\mu(3 \hat{i}+2 j+6 k)
$$

30. Two coins are tossed once. Find $P(E \mid F)$ where E : no tail appears, F : no head appears.
31. If A and B are two independent events , then prove that the probability of occurrence of at least one of A and B is given by $1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$.

PART - C

IV. Answer any six questions

32. Show that the relation R in the set of real numbers R defined as
$\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.
33. Simplify: $\tan ^{-1}\left(\frac{2 \cos x-3 \sin x}{3 \cos x+2 \sin x}\right), \frac{2}{3} \tan x>-1$.
34. If A and B are invertible matrices of the same order, then prove that $(A B)^{-1}=B^{-1} A^{-1}$.
35. If $x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}$ show that $\frac{d y}{d x}=-\frac{y}{x}$.
36. Differentiate $x^{\log x}, \mathrm{x}>0$ with respect to x
37. Find the intervals in which the function $f(x)=x^{2}-4 x+6$ is
i) strictly increasing
ii) strictly decreasing
38. Find $\int x(\log x)^{2} d x$
39. Find the equation of curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$
40. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4,|\vec{c}|=2$
41. If $\vec{a}=2 \hat{i}+2 j+3 k, \vec{b}=-\hat{i}+2 j+k$ and $\vec{c}=3 \hat{i}+j$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ
42. A man is known to speak truth 4 out of 5 times. He tossed a coin and reports that it is head. Find the probability that it is actually head?

PART - D

V. Answer any four questions
43. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$
for some $x \in N\}$. Show that f is invertible. Find the inverse of f.
44. If $\mathrm{A}=\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{lll}2 & 4 & -6\end{array}\right]$ verify that $(\mathrm{AB})^{\mid}=\mathrm{B}^{\mid} \mathrm{A}^{\mid}$
45. Solve by matrix method: $x+y+z=6, x-2 y+3 z=6, x-y+z=2$.
46. If $y=\sin ^{-1} x, \quad(-1 \leq x \leq 1)$ Show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$.
47. Find the integral of $\frac{1}{\sqrt{x^{2}+a^{2}}}$ with respect to x and hence evaluate $\int \frac{d x}{\sqrt{x^{2}+2 x+4}}$.
48. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
49. Solve the differential equation $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
50. Derive the formula to find the distance between two skew lines.

PART - E

VI. Answer the following questions

51. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$

And hence evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$
OR
Maximize and Minimize $Z=3 x+2 y$ subject to the constraints $x+2 y \leq 10, \quad 3 x+y \leq 15, x \geq 0, y \geq 0$
52. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ Show that $A^{2}-5 A+7 I=O$. Hence find A^{-1} 4 marks OR
Find the value of k so that the function $f(x)=\left\{\begin{array}{cl}\frac{k \cos x}{\pi-2 x} & \text { if } x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$

